
Overview

The Microsoft ODBC Driver for Oracle allows you to connect your ODBC-compliant application to an
Oracle database. This version adds additional performance and control features, including access to
PL/SQL packages, XA/DTC integration, and Oracle access from within Internet Information Server
(IIS).The ODBC Driver for Oracle conforms to the Open Database Connectivity (ODBC) specification
described in the ODBC Programmer's Reference for your platform.
This Help file describes how to set up, configure, and use the ODBC Driver for Oracle, and includes
the following sections:

· System Requirements
· Adding and Modifying Data Sources Using Setup
· Configuring the Oracle ODBC Driver
· Connecting to a Data Source
· Connection String Attributes
· ODBC Conformance Levels
· SQL Conformance Levels
· Mapping Data Types
· Using Microsoft Transaction Server
· Using Microsoft Internet Information Server
· Using Operating System Authentication
· Limitations of Using Keyset-Driven Cursors
· Returning Array Parameters from Stored Procedures
· Notes on API Functions

· Thread-Safety Notes on API Functions
· Core Level API Functions
· Level 1 API Functions
· Level 2 API Functions

· Connect Options Table
· Statement Options Table
· Cursor Type and Concurrency Combinations Table
· Error Messages

System Requirements

To use the Microsoft ODBC Driver for Oracle, you must have Microsoft Windows 95/98 or Microsoft
Windows NT and Oracle Client Software version 7.3 or later installed on your Windows system. The
Microsoft ODBC Driver for Oracle supports only SQL*Net 2.3 or later. For more information about
Oracle products, refer to your Oracle documentation set.

Adding and Modifying Data Sources Using Setup

A data source identifies a path to data that can include a network library, server, database, and other
attributes—in this case, the data source is the path to an Oracle database. To connect to a data
source, the Driver Manager checks the Windows registry for specific connection information.

The registry entry created by the ODBC Data Source Administrator is used by the ODBC Driver
Manager and ODBC drivers. This entry contains information about each data source and its
associated driver. Before you can connect to a data source, its connection information must be added
to the registry.

To add and configure data sources, access the ODBC Administrator through the 32-bit ODBC Control
Panel in Windows. The ODBC Administrator then updates your data source connection information.
As you add data sources, the ODBC Administrator updates the registry information for you.

To add a data source for Windows
1 To start the ODBC Administrator, double-click the ODBC Data Sources icon in the Windows

Control Panel.
2 When you see the ODBC Data Source Administrator dialog box, click Add. The Create New

Data Source dialog box appears.
3 Select the ODBC driver, and then click Finish. The Microsoft ODBC for Oracle Setup dialog box

appears.
4 In the Data Source Name box, type the name of the data source you want to access. It can be any

name that you choose.
5 In the Description box, type the description for the driver. This optional field describes the

database driver that the data source connects to. It can be any name that you choose.
6 In the User Name box, type your database user name. The user name is your database user ID.
7 In the Server box, type the connect string for the Oracle Server engine. The connect string

identifies the Oracle Server engine that you want to access.
8 Click OK to add this data source.

Note The Data Sources dialog box appears, and the ODBC Administrator updates the registry
information. The user name and connect string that you typed become the default data source
connection values for this data source. That is, when you connect to the data source using either a
dialog box or a connection string, these values become the default entries for the data source
connection.

9 You can click Options to make more specifications about the Oracle ODBC setup.
Translation
Click Select to choose a loaded data translator. The default is No Translator.

Performance
Include REMARKS in Catalog Functions specifies whether the driver returns Remarks columns
for the SQLColumns result set. The ODBC Driver provides faster access when this value is not set.
Include SYNONYMS in SQL Columns specifies whether the driver returns column information.

Customization
Enforce ODBC DayOfWeek Standard specifies whether the result set will conform to the ODBC
specified day-of-week format (Sunday = 1; Saturday = 7).

10Click Add to add another data source, or click Close to exit.

To modify a data source for Windows
1 Invoke the ODBC Administrator. The Data Sources dialog box appears.

2 In the Data Sources dialog box, select the Oracle data source you want to modify and then click
Setup. The Microsoft ODBC for Oracle Setup dialog box appears.

3 Modify the applicable data source fields, and then click OK.

When you have finished modifying the information in this dialog box, the ODBC Administrator updates
the registry information.

Configuring the Oracle ODBC Driver

You can control performance of the Oracle Driver by knowing the data environment and correctly
setting the parameters of the data source connection through the ODBC Data Source Administrator
dialog box or through connect string parameters. The dialog box provides the following controls for
connecting to a data source using the dialog box or using connect strings:

· User DSN tab Displays a list of the Data Source Names that are local to the computer.
· System DSN tab Displays a dialog box that allows you to add or remove a system data source.

System data sources are accessible to all users on the local machine.
· File DSN tab Displays a dialog box that allows you to add or remove a file data source from the

local machine. File data sources can be shared by all users who have the same driver installed.
· ODBC Drivers tab Displays a list of the installed ODBC drivers.
· Tracing tab Displays a dialog box that enables you to specify how the ODBC Driver Manager

traces calls to ODBC functions. You can configure tracing separately for each installed ODBC
application.

· Connection Pooling tab Displays a dialog box that enables you to select connection options for
each installed driver.

· About tab Displays a dialog box that lists the installed ODBC component files.

After you add a data source, you can use the ODBC Data Source Administrator dialog box to
configure the access to your data source. Select a data source, and then click one of the tabs to edit
or review the information.

The default limit (50) on the number of statement handles is set by the server.

Connecting to a Data Source

An ODBC application can pass connection information in a number of ways. For example, the
application might have the driver always prompt the user for connection information. Or the
application might expect a connection string that specifies the data source connection. How you
connect to a data source depends on the connection method used by your ODBC application.

One common way to connect to a data source is through the Data Source dialog box. If your ODBC
application is set up to use a dialog box, that dialog box is displayed and prompts you for the
appropriate data source connection information.

You can also connect to a data source using the connection string.

To connect to a data source using a dialog box
1 When you see the Data Source dialog box, select an Oracle data source and then click OK. The

Connect dialog box appears.
2 Fill in the appropriate information for the Connect dialog box, and then click OK.

Once the connection information is verified, your application can use the ODBC Driver to access the
information that the data source contains.

Connection String Attributes

Instead of using a dialog box, some applications might require a connection string that specifies data
source connection information. The connection string is made up of a number of attributes that specify
how a driver connects to a data source. An attribute identifies a specific piece of information that the
driver needs to know before it can make the appropriate data source connection. Each driver might
have a different set of attributes, but the connection string format is always the same. A connection
string has the following format:
"DSN=data-source-name[;SERVER=value] [;PWD=value] [;UID=value]
[;<Attribute>=<value>]"

Note The Microsoft ODBC Driver for Oracle supports the slightly different version 1 connection
string format.

You must specify the data source name if you do not specify the UID, PWD, SERVER (or
CONNECTSTRING), and DRIVER attributes. However, all other attributes are optional. If you do not
specify an attribute, that attribute defaults to the one that you specified in the DSN tab of the ODBC
Data Source Administrator dialog box. The attribute value might be case-sensitive.

The attributes for the connection string are as follows:

Attribute Description Default value
DSN The data source name. This name is

listed in the ODBC Drivers tab of the
ODBC Data Source Administrator
dialog box.

“”

PWD The password for the Oracle Server that
you want to access.

“”

SERVER The connect string for the Oracle Server
that you want to access.

“”

UID The Oracle Server user name.
Depending on your system, this attribute
might not be optional—that is, certain
databases and tables might require this
attribute for security purposes.
Use “/” to use Oracle’s operating
system authentication.

“”

BUFFERSIZE The optimal buffer size used when
fetching columns.
The driver optimizes fetching so that one
fetch from the Oracle Server returns
enough rows to fill a buffer of this size.
Larger values tend to increase
performance if you fetch a lot of data.

65535

SYNONYMCOLUMNS When this value is true (1), an
SQLColumn() API call returns column
information. Otherwise, SQLColumn()
returns only columns for tables and
views. The ODBC Driver provides faster
access when this value is not set.

1

REMARKS When this value is true (1), the driver
returns Remarks columns for the
SQLColumns result set. The ODBC

0

Driver provides faster access when this
value is not set.

StdDayOfWeek Enforces the ODBC standard for the
DAYOFWEEK scalar. By default, this is
turned on, but users who need the
localized version can change the
behavior to use whatever Oracle
returns.

1

For example, a connection string that connects to the Employees data source using the mickey.world
Oracle Server and the Oracle User cindy would be:
"DSN=Employees;UID=cindy;PWD=secret;SERVER=mickey.world"

A connection string that connects to the Payroll data source using operating system authentication
and the moola Oracle Server would be:
"DSN=Payroll;UID=/;PWD=;SERVER=moola"

ODBC Conformance Levels

ODBC defines two types of conformance standards for drivers: the API conformance standard and
the SQL grammar conformance standard. API conformance refers to the functions that a driver
supports. SQL conformance refers to the SQL grammar that the driver supports. Each conformance
standard is made up of levels.

API Conformance Level
The ODBC Driver supports the Core Level functions and Level 1 API functions. The driver also
supports the following Level 2 functions:

· SQLBrowseConnect()
· SQLDataSources()
· SQLDescribeParam()
· SQLExtendedFetch()
· SQLForeignKeys()
· SQLMoreResults()
· SQLNativeSql()
· SQLNumParams()
· SQLPrimaryKeys()
· SQLProcedureColumns()
· SQLProcedures()
· SQLSetPos()
· SQLSetScrollOptions()

Supported Options
The driver supports the following options for the SQLGetConnectOption() and
SQLSetConnectOption() Level 1 functions:

· SQL_ACCESS_MODE (SQLGetConnectOption() only)
· SQL_AUTOCOMMIT
· SQL_ODBC_CURSORS
· SQL_OPT_TRACEFILE
· SQL_OPT_TRACE
· SQL_TRANSLATE_DLL
· SQL_TRANSLATE_OPTION
· SQL_TXN_ISOLATION

The driver supports the following options for the SQLGetStmtOption() and SQLSetStmtOption()
Level 1 functions:

· SQL_BIND_TYPE
· SQL_CONCURRENCY
· SQL_CURSOR_TYPE
· SQL_KEYSET_SIZE
· SQL_MAX_ROW
· SQL_ROWSET_SIZE

SQL Conformance Levels

The ODBC Driver supports the Minimum SQL grammar and Core SQL grammar and also supports
the following ODBC extensions to SQL:

· Date, time, and timestamp data
· Left and right outer joins
· Numeric functions:

abs log round tan
ceiling log10 second truncate
cos mod sign
exp pi sin
floor power sqrt

· Date functions:
curdate dayofweek monthname second
curtime dayofyear minute week
dayname hour now year
dayofmonth month quarter

· String functions:
ascii left right ucase
char length rtrim
concat ltrim soundex
lcase replace substring

· Type-conversion function:
convert

· System functions:
ifnull
user

Mapping Data Types

The Oracle Server supports a set of data types. The ODBC Driver maps these data types to their
appropriate ODBC SQL data types. The following table lists the Oracle 7.3 Server data types and
their corresponding ODBC SQL data types.

Oracle Server data type ODBC SQL data type
CHAR SQL_CHAR
DATE SQL_TIMESTAMP
FLOAT SQL_DOUBLE
INTEGER SQL_DECIMAL
LONG SQL_LONGVARCHAR
LONG RAW SQL_LONGVARBINARY
NUMBER SQL_DECIMAL
RAW SQL_VARBINARY
VARCHAR2 SQL_VARCHAR

Note ODBC SQL data types do not support the Oracle MLSLABEL data type. Scalar values are
returned in the local code page format.
In Oracle 8, the maximum size of a VARCHAR column has increased from 2000 to 4000 bytes. The
Oracle 7.3.x client software has no way to bind a parameter value larger than 2000 bytes. Therefore,
if you create a table with a VARCHAR column of larger than 2000 bytes, you will be unable to perform
parameterized inserts, updates, deletes, and queries against it with data that exceeds the 2000-byte
limit of the client software. Because both the ODBC Driver for Oracle and the OLE DB Provider for
Oracle use parameterized inserts, updates, deletes, and queries, they will report ORA-01026 errors in
this case. Data that is within the limits enforced by the Oracle client software will work. To avoid this
2000-byte limit, you must upgrade your client software to Oracle 8 (8.0.4.1.1c or higher).

Using Microsoft Transaction Server

You can enable an Oracle database to work with transactional Microsoft Transaction Server (MTS)
components on Microsoft Windows NT and Microsoft Windows 95/98. To enable an Oracle database
to work with MTS components that support transactions, system administrators should create a view
named V$XATRANS$. To create this script, you must run an Oracle-supplied script. For more
information, see the Microsoft Transaction Server Help or your Oracle documentation.

Using Microsoft Internet Information Server

If you have difficulty connecting from within an Internet Information Server (IIS) script (particularly an
ORA-12641 error), add the following line to the Sqlnet.ora file:
SQLNET.AUTHENTICATION_SERVICES = (none)

This will disable the Secure Network Services so that Anonymous authentication can work.

Using Operating System Authentication

Oracle operating system authentication relies on the underlying operating system to control access to
database accounts. Users need not enter a password when using this type of login.

To take advantage of this feature, specify “/” as the userid and do not specify a password when
connecting using any of the following connection APIs: SQLBrowseConnect, SQLConnect, or
SQLDriverConnect.

Limitations of Using Keyset-Driven Cursors

You must be able to retrieve a single ROWID column for the table queried. A keyset-driven cursor
cannot be used on joins, queries, or statements containing DISTINCT, GROUP BY, UNION,
INTERSECT, or MINUS clauses.

Returning Array Parameters from Stored Procedures

In Oracle 7.3, there is no way to access a PL/SQL Record Type except from a PL/SQL program. If a
packaged procedure or function has a formal argument defined as a PL/SQL Record Type, it is not
possible to bind that formal argument as a parameter. Use the PL/SQL TABLE type in the Microsoft
ODBC Driver for Oracle to invoke array parameters from procedures containing the correct escape
sequences.

To invoke the procedure, use the following syntax:
{call <package-name>.<proc-or-func>;
(..., {resultset <max-records-requested> ,<formal-array-param_1>,;
 <formal-array-param_2>,...,<formal-array-param_n> }, ...) }

Note
· The <max-records-requested> parameter must be greater than or equal to the number of

rows present in the result set. Otherwise, Oracle returns an error that is passed to you by the
driver.

· You cannot use PL/SQL records as array parameters. Each array parameter can represent only
one column of a database table.

The following example defines a package containing two procedures that return different result sets,
and then provides two ways to return result sets from the package.

Package definition:
CREATE OR REPLACE PACKAGE SimplePackage AS

TYPE t_id is TABLE of NUMBER(5)
 INDEX BY BINARY_INTEGER;

TYPE t_Course is TABLE of VARCHAR2(10)
 INDEX BY BINARY_INTEGER;

TYPE t_Dept is TABLE of VARCHAR2(5)
 INDEX BY BINARY_INTEGER;

PROCEDURE proc1
(
o_id OUT t_id,
ao_course OUT t_Course,
ao_dept OUT t_Dept
);

TYPE t_pk1Type1 IS TABLE OF VARCHAR2(100) INDEX BY BINARY_INTEGER;
TYPE t_pk1Type2 IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
PROCEDURE proc2

(
i_Arg1 IN NUMBER,
ao_Arg2 OUT t_pk1Type1,
ao_Arg3 OUT t_pk1Type2
);

END SimplePackage;

CREATE OR REPLACE PACKAGE BODY SimplePackage AS

 PROCEDURE proc1 (o_id OUT t_id,
 ao_course OUT t_Course, ao_dept OUT t_Dept) AS
 BEGIN
 o_id(1):= 200;
 ao_course(1) := 'M101';
 ao_dept(1) := 'EEE' ;

 o_id(2) := 201;
 ao_course(2) := 'PHY320';
 ao_dept(2) := 'ECE' ;

 END proc1;
PROCEDURE proc2

(
i_Arg1 IN NUMBER,
ao_Arg2 OUT t_pk1Type1,
ao_Arg3 OUT t_pk1Type2
)

AS
i NUMBER;

BEGIN
FOR i IN 1 .. i_Arg1 LOOP

ao_Arg2(i) := 'Row Number ' || to_char(i);
END LOOP;
FOR i IN 1 .. i_Arg1 LOOP

ao_Arg3(i) := i;
END LOOP;

END proc2;
END SimplePackage;

To invoke procedure PROC1
1 Return all the columns in a single result set:
{ call SimplePackage.Proc1({resultset 3, o_id , ao_course, ao_dept })
}

2 Return each column as a single result set:
{call SimplePackage.Proc1({resultset 3, o_id}, {resultset 3,
ao_course}, {resultset 3, ao_dept}) }

This returns three result sets, one for each column.

To invoke procedure PROC2
1 Return all the columns in a single result set:
{call SimplePackage.Proc2(5 , {resultset 5, ao_Arg2, ao_Arg3}) }

2 Return each column as a single result set:
{call SimplePackage.Proc2(5 , {resultset 5, ao_Arg2}, {resultset 5,
ao_Arg3}) }

Ensure that your applications fetch all the result sets using the SQLMoreResults API. For more
information, refer to the ODBC Programmer's Reference.

Note In the ODBC Driver for Oracle version 2.0, you cannot use Oracle functions that return
PL/SQL arrays to return result sets.

Notes on API Functions

The Microsoft ODBC Driver for Oracle supports the Core Level, Level 1, and Level 2 API functions.
These functions are listed in ODBC Conformance Levels.

· Core Level Interface(CLI) conformance provides features defined in the ISO CLI specification and
the mandatory features defined in the X/Open CLI specification.

· Level 1 conformance provides Core Level Interface functionality as well as additional features such
as transactions.

· Level 2 conformance provides Level 1 functionality as well as additional features such as
bookmarks, dynamic parameters, and asynchronous execution of ODBC functions.

Thread-Safety Notes on API Functions

The Microsoft ODBC Driver for Oracle is thread-safe; however, Oracle does not allow active multiple
concurrent statements on a single connection. The driver enforces this restriction. In other words, in
multithreaded applications, though any thread can call into the Oracle ODBC Driver at any time, the
driver blocks any other thread from the driver on the same connection until the original thread leaves
the driver.

The driver does not block if there are two statements on two different connections. However, if there is
a single connection with two statements, there is potential for blocking.

Core Level API Functions

Functions at this level comprise the minimum level of interface conformance for ODBC drivers.

API function Notes
SQLAllocConnect Allocates memory for a connection handle, hdbc, within the

environment identified by henv. The Driver Manager
processes this call and calls the driver’s SQLAllocConnect
function whenever SQLConnect, SQLBrowseConnect, or
SQLDriverConnect is called.

SQLAllocEnv Displays a dialog box specifying the requirement for Oracle
Client software and then returns SQL_NULL_HANDLE. If
the Oracle Client software is not installed, this function
allocates memory for an environment handle, henv, and
initializes the ODBC call-level interface for use by an
application.

SQLAllocStmt Allocates memory for a statement handle and associates
the statement handle with the connection specified by hdbc.
The Driver Manager passes this call to the driver, which
allocates the memory for the hstmt structure.

SQLBindCol Assigns storage space for a result column and specifies the
type of the result.

SQLCancel Cancels the processing on a statement handle, hstmt. In
some cases, Oracle does not allow you to cancel a running
statement. This means that a running statement will
continue until Oracle completes the process, at which time
the results from the statements are canceled by the ODBC
Driver.

SQLColAttributes Returns descriptor information for a column in a result set.
Descriptor information is returned as a character string, a
32-bit descriptor-dependent value, or an integer value.

SQLConnect Connects to a data source. To use Oracle Operating
System Authentication, specify “/” as the szUID parameter
and “” as the szAuthStr parameter.

SQLDescribeCol Returns the name, type, precision, scale, and nullability of
the given result column.
Note SQLDescribeCol reports calculated columns as
SQL_VARCHAR.

SQLDisconnect Closes a connection. If connection pooling is enabled for a
shared environment and an application calls
SQLDisconnect on a connection in that environment, the
connection is returned to the connection pool and is still
available to other components using the same shared
environment.

SQLError Returns error or status information about the last error. The
driver maintains a stack or list of errors that can be returned
for the hstmt, hdbc, and henv arguments, depending on
how the call to SQLError is made. The error queue is
flushed after each statement. Usually retrieves an Oracle
error message and is otherwise empty.

SQLExecDirect Executes a new, preparable SQL statement. The driver

uses the current values of the parameter marker variables if
any parameters exist in the statement. If your table, view, or
field names contain spaces, enclose the names in back
quote marks. For example, if your database contains a table
named My Table and the field My Field, enclose each
element of the identifier like so:
SELECT “My Table”. “My Field1”,;
“My Table”.“My Field2” FROM “My Table”

SQLExecute Executes a prepared SQL statement (a statement already
prepared by SQLPrepare). The driver uses the current
values of the parameter marker variables if any parameters
exist in the statement.

SQLFetch Retrieves one row from a result set into the locations
specified by the previous calls to SQLBindCol. Prepares
the driver for a call to SQLGetData for the unbound
columns.

SQLFreeConnect Releases a connection handle and frees all memory
allocated for the handle.

SQLFreeEnv Closes the ODBC Driver and releases all memory
associated with the driver.

SQLFreeStmt Stops processing associated with a specific hstmt, closes
any open cursors associated with the hstmt, discards
pending results, and optionally, frees all resources
associated with the statement handle.

SQLGetCursorName Returns the name of the cursor associated with the given
hstmt.

SQLNumResultCols Returns the number of columns in a result set cursor.
SQLPrepare Prepares an SQL statement by planning how to optimize

and execute the statement. The SQL statement is compiled
for execution by SQLExecDirect.
If your table, view, or field names contain spaces, enclose
the names in back quote marks. For example, if your
database contains a table named My Table and the field My
Field, enclose each element of the identifier as follows:

SELECT “My Table”.“My Field” FROM “My
Table”

For information about using result sets containing arrays as
formal parameters, see Returning Array Parameters from
Stored Procedures.

SQLRowCount Oracle does not provide a way to determine the number of
rows in a result set until after you fetch the last row, so it
returns –1.

SQLSetCursorName Associates a cursor name with an active statement handle,
hstmt.

SQLSetParam Replaced by SQLBindParameter in ODBC 2.x.
SQLTransact Requests a commit or rollback operation for all active

operations on all statement handles (hstmts) associated
with a connection, or for all connections associated with the
environment handle, henv. If a commit fails when in manual
mode, the transaction remains active; you can choose to

roll back the transaction or retry the commit operation. If a
commit operation fails when in automatic transaction mode,
the transaction is rolled back automatically; the transaction
cannot be inactive.

Level 1 API Functions

Functions at this level provide Core interface conformance plus additional functionality such as
transaction support.

API function Notes
SQLColumns Creates a result set for a table, which is the column list for

the specified table or tables. When you request columns
for a PUBLIC synonym, you must have set the
SYNONYMCOLUMNS connection attribute and specified
an empty string as the szTableOwner argument. When
returning columns for PUBLIC synonyms, the driver sets
the TABLE NAME column to an empty string. The result
set contains an additional column, ORDINAL POSITION,
at the end of each row. This value is the ordinal position of
the column in the table.

SQLDriverConnect Connects to an existing data source. For details, see
Connection String Attributes.

SQLGetConnectOption Returns the current setting of a connection option. This
function is partially supported. The driver supports all
values for the fOption argument but does not support some
vParam values for the fOption argument
SQL_TXN_ISOLATION. For more information, see the
Connect Options Table.

SQLGetData Retrieves the value of a single field in the current record of
the given result set.

SQLGetFunctions Returns TRUE for all supported functions. Implemented by
the Driver Manager.

SQLGetInfo Returns information, including SQLHDBC,
SQLUSMALLINT, SQLPOINTER, SQLSMALLINT, and
SQLSMALLINT *, about the ODBC driver and data source
associated with a connection handle, hdbc.

SQLGetStmtOption Returns the current setting of a statement option. For more
information, see the Statement Options Table.

SQLGetTypeInfo Returns information about the data types supported by a
data source. The driver returns the information in an SQL
result set.

SQLParamData Used in conjunction with SQLPutData to specify
parameter data at statement execution time.

SQLPutData Allows an application to send data for a parameter or
column to the driver at statement execution time.

SQLSetConnectOption Provides access to options that govern aspects of the
connection. This function is partially supported: The driver
supports all values for the fOption argument but does not
support some vParam values for the fOption argument
SQL_TXN_ISOLATION. For more information, see the
Connect Options Table.

SQLSetStmtOption Sets options related to a statement handle, hstmt. For
more information, see the Statement Options Table.

SQLSpecialColumns Retrieves the optimal set of columns that uniquely
identifies a row in the table.

SQLStatistics Retrieves a list of statistics about a single table and the
indexes, or tag names, associated with the table. The
driver returns the information as a result set.

SQLTables Returns the list of table names specified by the parameter
in the SQLTables statement. If no parameter is specified,
returns the table names stored in the current data source.
The driver returns the information as a result set.
Enumeration type calls will not receive a result set entry for
remote views or local parameterized views. However, a
call to SQLTables with a unique table name specifier will
find a match for such a view, if present, with that name;
this allows the API to check for name conflicts prior to
creation of a new table.
PUBLIC synonyms are returned with a TABLE_OWNER
value of “”.
VIEWS owned by SYS or SYSTEM are identified as
SYSTEM VIEW.

Level 2 API Functions

Functions at this level provide Level 1 interface conformance plus additional functionality such as
support for bookmarks, dynamic parameters, and asynchronous execution of ODBC functions.

API function Notes
SQLBindParameter Associates a buffer with a parameter marker in an SQL

statement.
SQLBrowseConnect Returns successive levels of attributes and attribute

values.
SQLDataSources Lists data source names. Implemented by the Driver

Manager.
SQLDescribeParam Returns the description of a parameter marker associated

with a prepared SQL statement.
Returns a best guess of what the parameter is, based on
parsing the statement. If the parameter type cannot be
determined, SQL_VARCHAR returns with length 2000.

SQLDrivers Implemented by the Driver Manager.
SQLExtendedFetch Similar to SQLFetch but returns multiple rows using an

array for each column. The result set is forward-scrollable
and can be made backward-scrollable if the cursor is
defined to be static, not forward-only. For forward-only
cursors with default column binding, column data from
data sets larger than the BUFFERSIZE connection
attribute is fetched directly into data buffers. Does not
support variable-length bookmarks and does not support
fetching a rowset at an offset (other than 0) from a
bookmark.

SQLForeignKeys Returns a list of foreign keys in a single table, or a list of
foreign keys in other tables that refer to a single table.

SQLMoreResults Determines whether more results are pending on a
statement handle, hstmt, containing SELECT, UPDATE,
INSERT, or DELETE statements and if so, initializes
processing for those results.
Oracle supports multiple result sets only from stored
procedures, when using {resultset… } escape sequences.

SQLNativeSql For information about usage, see Returning Array
Parameters from Stored Procedures.

SQLNumParams Returns the number of parameters in an SQL statement.
The number of parameters should equal the number of
question marks in the SQL statement passed to
SQLPrepare.

SQLPrimaryKeys Returns the column names that comprise the primary key
for a table.

SQLProcedureColumns Returns a list of input and output parameters, the return
value, the columns in the result set of a single procedure,
and two additional columns, OVERLOAD and
ORDINAL_POSITION. OVERLOAD is the OVERLOAD
column from the ALL_ARGUMENTS table of the Oracle
Data Dictionary View. ORDINAL_POSITION is the
SEQUENCE column from the ALL_ARGUMENTS table of

the Oracle Data Dictionary View. For packaged
procedures, the PROCEDURE NAME column is in
packagename.procedurename format. Does not return
the procedure columns of a created synonym that refers
to a procedure or function.

SQLProcedures Returns a list of procedures in the data source. For
packaged procedures, the PROCEDURE NAME column
is in packagename.procedurename format.

Because Oracle does not provide a way to distinguish
packaged procedures from packaged functions, the driver
returns SQL_PT_UNKNOWN for the
PROCEDURE_TYPE column.

SQLSetPos Sets the cursor position in a rowset. You can use
SQLSetPos with SQLGetData to retrieve rows from
unbound columns after positioning the cursor to a specific
row in the rowset. Rows added to the result set using
fOption SQL_ADD are added after the last row in the
result set.

SQLSetScrollOptions Sets options that control the behavior of cursors
associated with a statement handle, hstmt. For details,
see the Cursor Type and Concurrency Combinations
Table.

Connect Options Table

These options allow customization of the database connection within an application.

Connect option Notes
SQL_AUTOCOMMIT If you choose SQL_AUTOCOMMIT_OFF, your

application must explicitly commit or roll back
transactions with SQLTransact.

SQL_ODBC_CURSORS This connection attribute is implemented in the
Driver Manager.

SQL_OPT_TRACE This connection attribute is implemented in the
Driver Manager.

SQL_OPT_TRACEFILE This connection attribute is implemented in the
Driver Manager.

SQL_TRANSLATE_DLL Returns error: “Driver not capable.”
SQL_TRANSLATE_OPTION A 32-bit value passed to the translation DLL.
SQL_TXN_ISOLATION The driver allows only

SQL_TXN_READ_COMMITTED.
The following vParams are not supported:

SQL_TXN_READ_UNCOMMITTED
SQL_TXN_REAPEATABLE_READ
SQL_TXN_SERIALIZABLE

SQL_ATTR_ENLIST_IN_DTC This ODBC 3.0 connection attribute allows you to
use the Oracle ODBC Driver in distributed
transactions coordinated by Microsoft Transaction
Server. It provides the interface pointer
pITransaction to the transaction as the vParam
argument.

SQL_ATTR_CONNECTION_DE
AD

This read-only ODBC 3.5 connection attribute
allows you to determine whether the connection to
the Oracle server has failed. Get only; cannot Set.

Statement Options Table

These options allow customization of a specific execution statement within an application.

Statement options Notes
SQL_BIND_TYPE Cannot exceed 2,147,483,647 bytes or available

memory.
SQL_CONCURRENCY For allowed values, see the Cursor Type and

Concurrency Combinations Table.
SQL_CURSOR_TYPE The driver does not allow

SQL_CURSOR_DYNAMIC. See
SQLSetScrollOptions for more information. For
allowed values, see the Cursor Type and
Concurrency Combinations Table.

SQL_GET_BOOKMARK Returns a 32-bit integer value that is the bookmark
for the current record number. Get only; cannot Set.

SQL_KEYSET_SIZE Can be set only to 0.
SQL_MAX_ROWS The maximum number of rows to return from a

result set.
SQL_ROW_NUMBER Returns a 32-bit integer specifying the position of

the current row within the result set. Get only;
cannot Set.

SQL_ROWSET_SIZE Cannot exceed 4,294,967,296 rows; however, you
must have enough virtual memory in your computer
to handle your request.

SQL_USE_BOOKMARKS Supports setting SQL_USE_BOOKMARKS to
SQL_UB_ON and exposes fixed-length bookmarks.

Cursor Type and Concurrency Combinations Table

Cursor types control the functionality of the cursor provided to the user. Concurrency options control
the updatability and locking behavior of a result set.

Cursor type Concurrency (allowed values)
SQL_CURSOR_FORWARD_ONLY SQL_CONCUR_READ_ONLY
SQL_CURSOR_STATIC SQL_CONCUR_READ_ONLY
SQL_CURSOR_KEYSET_DRIVEN* SQL_CONCUR_READ_ONLY

SQL_CONCUR_LOCK **
SQL_CONCUR_VALUES

Notes
* See Limitations of Using Keyset-Driven Cursors.

** SQL_CONCUR_LOCK is supported only when the SQL_AUTOCOMMIT connection
option is set to SQL_AUTOCOMMIT_OFF.

Error Messages

When an error occurs, the Microsoft ODBC Driver for Oracle returns the SQLSTATE (an ODBC error
code) and an error message. The driver derives this information both from errors detected by the
driver and from errors returned by the Oracle Server.

Messages Returned by the Oracle ODBC Driver
If an Oracle error message is available, it will be returned preceded by the [Microsoft], [ODBC Driver
for Oracle], and [Oracle] tags; otherwise, the message is returned without the [Oracle] tag as in the
following examples:

Oracle error message:
[Microsoft][ODBC Driver for Oracle][Oracle]ORA-nnnnn message-text

Oracle ODBC Driver error message:
[Microsoft][ODBC Driver for Oracle]

